ASSAB 8407 SUPREME

UDDEHOLM ORVAR SUPREME

Acces 1	U UDDEHOLM		参考标准 ·······	
ASSAB 🚣	a voestalpine company	AISI	WNr.	JIS
ASSAB DF-3	ARNE	O1	1.2510	SKS 3
ASSAB XW-10	RIGOR	A2	1.2363	SKD 12
ASSAB XW-42	SVERKER 21	D2	1.2379	(SKD 11)
CALMAX / CARMO	CALMAX / CARMO		1.2358	
VIKING	VIKING / CHIPPER		(1.2631)	
CALDIE	CALDIE			
ASSAB 88	SLEIPNER			
ASSAB PM 23 SUPERCLEAN	VANADIS 23 SUPERCLEAN	(M3:2)	1.3395	(SKH 53)
ASSAB PM 30 SUPERCLEAN	VANADIS 30 SUPERCLEAN	(M3:2 + Co)	1.3294	SKH 40
ASSAB PM 60 SUPERCLEAN	VANADIS 60 SUPERCLEAN		(1.3292)	
VANADIS 4 EXTRA SUPERCLEAN	VANADIS 4 EXTRA SUPERCLEAN			
VANADIS 8 SUPERCLEAN	VANADIS 8 SUPERCLEAN			
VANCRON SUPERCLEAN	VANCRON SUPERCLEAN			
ELMAX SUPERCLEAN	ELMAX SUPERCLEAN			
VANAX SUPERCLEAN	VANAX SUPERCLEAN			
ASSAB 518		P20	1.2311	
ASSAB 618 T		(P20)	(1.2738)	
ASSAB 618 / 618 HH		(P20)	1.2738	
ASSAB 718 SUPREME / 718 HH	IMPAX SUPREME / IMPAX HH	(P20)	1.2738	
NIMAX / NIMAX ESR	NIMAX / NIMAX ESR			
VIDAR 1 ESR	VIDAR 1 ESR	H11	1.2343	SKD 6
UNIMAX	UNIMAX			
CORRAX	CORRAX			
ASSAB 2083		420	1.2083	SUS 420J2
STAVAX ESR	STAVAX ESR	(420)	(1.2083)	(SUS 420J2
MIRRAX ESR	MIRRAX ESR	(420)		
MIRRAX 40	MIRRAX 40	(420)		
TYRAX ESR	TYRAX ESR			
POLMAX	POLMAX	(420)	(1.2083)	(SUS 420J2
ROYALLOY	ROYALLOY	(420 F)		
COOLMOULD	COOLMOULD			
ASSAB 2714			1.2714	SKT 4
ASSAB 2344		H13	1.2344	SKD 61
ASSAB 8407 2M	ORVAR 2M	H13	1.2344	SKD 61
ASSAB 8407 SUPREME	ORVAR SUPREME	H13 Premium	1.2344	SKD 61
DIEVAR	DIEVAR			
QRO 90 SUPREME	QRO 90 SUPREME			P
FORMVAR	FORMVAR			

⁽⁾⁻改良级

20210524 版本

[&]quot;一胜百"(ASSAB)和徽标是注册商标。本文所载资料,是根据我们目前的知识水平所编写,目的是提供对我们的产品及使用的一般建议,因此不应该当做是描述产品特定性质的保证,或者被用于其它特定用途。每个一胜百的用户应当自己判断选择一胜百产品和服务的适用性。

ASSAB 8407 Supreme

ASSAB 8407 Supreme可被视为在多个应用领域中使用的"全能" 钢材。除了应用于热作领域,还用于塑料模具和高应力轴材料。

高纯度和非常精细的结构显示了能改进模具和部件的机械性能和 热应力。

简介

ASSAB 8407 Supreme是一种铬、钼、钒合金工具钢, 其优点如下:

- 优良的耐热冲击和抗热疲劳性能
- 良好的高温强度
- 各个方向上优异的韧性和延展性
- 良好的机加工性及抛光性
- 优良的淬透性
- 良好的热处理尺寸稳定性

典型成分%	С	Si	Mn	Cr	Мо	٧
典望成万%	0.39	1.0	0.4	5.2	1.4	0.9
标准规范	优质的 AISI H13, WNr. 1.2344					
供货状态	软性退	₹火,硬/	变约18 0	НВ		

提高模具寿命

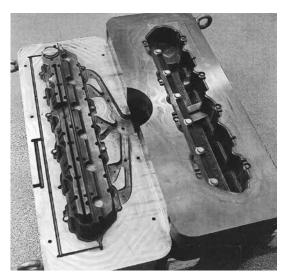
"Supreme" 意味着在经过特殊炼钢技术和严密质量控制后,钢材拥有的高纯度和非常好的显微组织。另外,与传统工艺冶炼的H13类相比,ASSAB 8407 Supreme展现出更优异的各向同性。

这对于模具的抵抗高的机械及热疲劳应力性能更具价值,如压铸模具、锻造模具及挤压模具等。在实际应用中ASSAB 8407 Supreme制作的模具可选用高于普通H13类材料1~2HRC的硬度而不会牺牲韧性。高硬度可以减缓热龟裂的发生,提高模具寿命。

ASSAB 8407 Supreme 符合北美压铸协会 (NADCA) # 207-2011 压铸模具用高级H13钢标准。

应用

压铸模具


部件	锡铅锌合金 HRC	铝镁合金 HRC	铜合金 HRC
压铸模具	46 - 50	42 - 48	QRO 90 Supreme
镶块,型芯	46 - 52	44 - 48	QRO 90 Supreme
浇口	48 - 52	46 - 48	QRO 90 Supreme
喷嘴	35 - 42	42 - 48	QRO 90 Supreme
顶针(氮化)	46 - 50	46 - 50	46 - 50
柱塞,套筒 (通常进行 氮化)	42 - 46	42 - 48	QRO 90 Supreme
奥氏体化 温度	1020 - 1030 °C		1040 - 1050 °C

挤压模具

部件	铝镁合金 HRC	铜合金 HRC	不锈钢 HRC
模仁	44 - 50	43 - 47	45 - 50
模托,衬垫,垫 板,顶杆,支撑 垫块	41 - 50	40 - 48	40 - 48
奥氏体化温度 (大约)	1020 - 1030 °C	1040 - 1050 °C	

热锻模具

被加工材料	奥氏体化温度 (大约)℃	HRC
铝镁合金、铜合金、钢铁	1020 - 1030	44 - 52
	1040 - 1050	44 - 52
	10 4 0 - 1050	40 - 50

塑胶模具

部件	奥氏体化温度.	HRC
注塑模	1020 - 1030 °C	
压缩/ 传递模	回火 1. ≥550 ℃ 或者 2. 250 ℃	40 - 52 50 - 53

其它应用

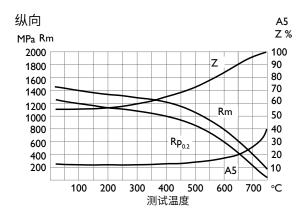
应用	奥氏体化温度	HRC
冷冲切,剪切	1020 - 1030 ℃ 回火 250 ℃	50 - 53
热剪切	1020 - 1030 ℃ 回火 1. 250 ℃ 或者 2. 575-600 ℃	50 - 53 45 - 50
模具套环(如:用于紧固 金属模)	1020 - 1030 ℃ 回火 575 - 600 ℃	45 - 50
耐磨部件	1020 - 1030 ℃ 回火 575 ℃ 氮化	芯部 50 - 52 表面 ~1000 HV ₁

特性

所有试样均从407×127mm 厚板中心取样,除非另 有说明,所有试样在1025℃淬火保温30分钟,空冷 后在610℃回火2次每次2小时,硬度达到45±1HRC。

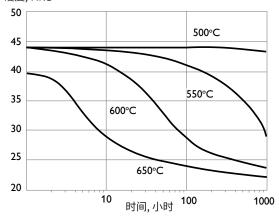
物理性能

室温和高温下的数据


温度	20 °C	400 °C	600 °C
密度 kg/m³	7 800	7 700	7 600
弹性模量 MPa	210 000	180 000	140 000
热膨胀系数 20°C起/°C	-	12.6 x 10 ⁻⁶	13.2 × 10 ⁻⁶
热传导系数 W/m℃	25	29	30

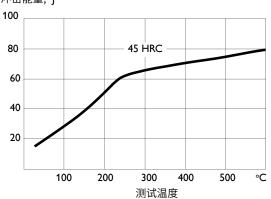
机械性能

室温抗拉强度


硬度	52 HRC	45 HRC
抗拉强度 Rm	1 820 MPa	1 420 MPa
屈服强度, Rp _{0.2}	1 520 MPa	1 280 MPa

高温强度

高温保温时间对硬度的影响


硬度, HRC

温度对冲击能量的影响

Charpy-V 缺口试样,短横向

冲击能量, **J**

热处理

软性退火

将钢材于保护气氛中加热至850°C,均热后,于炉中以每小时10°C的速度,冷却至650°C后空冷。

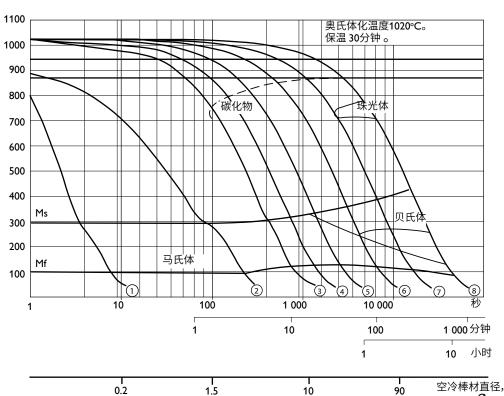
去应力回火

模具经粗加工后,加热到650°C,保温2小时,缓慢冷却至500°C,然后空冷。

淬火

预热温度:600-850°C通常分为两阶段预热, 奥氏体化温度:1020-1050°C,通常1020-1030°C

温度℃	保温时间 分钟*	回火前硬度 HRC
1025	30	53±2
1050	15	54±2


保温时间=钢材在淬火温度下完全热透后再需保温的时间

钢材在淬火过程中必须加以保护避免氧化及脱碳。

CCT-曲线图

奥氏体化温度1020℃。保温 30 分钟。

冷却 曲线 编号	硬度 HV 10	T ₈₀₀₋₅₀₀ 秒
1	681	1
2	620	37
3	606	160
4	601	280
5	585	560
6	560	1 390
7	537	3 220
8	473	8 360

淬火介质

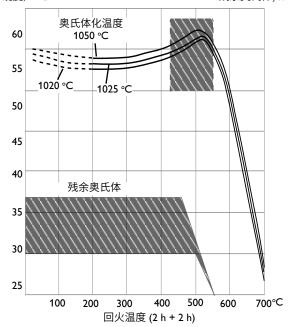
- 高速气体/循环气氛。
- 真空(足够正压力的高速气体),可采用分级淬火 来控制变形或淬火裂纹。
- 在450-550°C的盐浴炉或流动粒子炉中分级淬 火,然后空冷。
- 在约180-220℃的盐浴炉或流动粒子炉中分级淬 火,然后空冷。
- 温油。

注意 1: 当钢材温度冷至50-70℃时, 应立即回火。

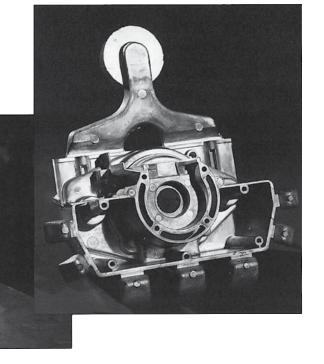
注意 2:为了要使模具获得最佳的性能,淬冷速度 应越快越好,但是不能因此造成过度严重 的变形或开裂。

硬度、晶粒度及残余奥氏体和奥氏体化温度间的 关系

晶粒度 硬度, HRC 残余奥氏% **ASTM** 60 晶粒度 58 10 56 8 硬度 54 6 52 50 48 残余奥氏体 6 46 44 42 40 1000 1020 1040 1060 °C

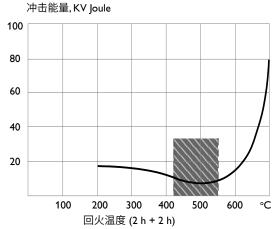

回火

参照回火曲线图,根据所需硬度选择适当的回火温 度。回火至少两次,每次回火后必须冷却至室温。


最低的回火温度为250°C,每次回火需保温至少两 小时,应避免在425-550℃之间回火(如下图所示), 以避免回火脆性。

硬度, HRC

残余奥氏体,%



以上回火曲线是在对15×15×40mm大小的样品进行热处理后, 在强制空气中冷却后获得的。由于诸如实际工模具尺寸和热处理参数等因素,在热处理刀具和模具之后可能会出现较低 的硬度。

不同回火温度下的近似冲击能量

Charpy V 缺口试样, 短横向

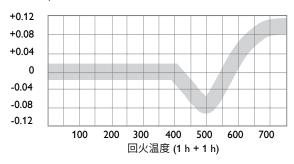
不推荐在 425-550℃间回火以免导致韧性降低。

氮化及氮碳共渗

氮化及氮碳共渗处理产生的高硬度表层有很好的耐磨性和抗侵蚀性。但是,由于其韧性相对较差,在机械应力和热应力的冲击时易产生裂纹或剥离,而且这种风险随着氮化层厚度的增加而增加。在氮化前,钢材必须进行硬化,且回火温度必须高于氮化温度25-50°C。

在510°C氨气中氮化、或在480°C的75%氢气和25%氮气的混合气氛中离子氮化,都能得到约1100HV_{0.2}的表层硬度。一般推荐离子氮化,因为其氮势容易控制,特别是离子氮化能避免产生"氮化白层",从而满足热作模应用要求。当然,如果气体氮化控制得当,同样能获得满意的效果。

ASSAB 8407 Supreme既能在气体中也能在盐浴中进行软氮化,表面硬度能达到900-1000HV。。。


淬火过程中尺寸变化

样品尺寸: 100 x 100 x 25 mm

		宽度%	长度%	厚度%
从1020℃油淬	最低	-0.08	-0.06	±0
	最高	-0.15	-0.16	+0.30
自 1020℃ 气淬	最低	-0.02	-0.05	±0
	最高	+0.03	+0.02	+0.05
自 1020℃真空淬火	最低	+0.01	-0.02	+0.08
	最高	+0.02	-0.04	+0.12

回火过程尺寸变化

尺寸变化,%

注意: 淬火+回火过程中尺寸的变化是上述两者的叠加。

氮化层深度

工艺	时间	深度
	L J -J	mm
气体氮化 510 °C	10 h 30 h	0.12 0.20
离子氮化 480 ℃	10 h 30 h	0.12 0.18
氮碳共渗 - 580 ℃ 气体氮碳共渗 - 580 ℃ 盐浴氮碳共渗	2.5 h 1 h	0.11 0.06

建议热作钢氮化总深度不超过0.3mm。ASSAB 8407 Supreme 也可以在软性退火状态进行氮化,但表面硬度和氮化深度将降低。

机加工参数推荐

以下切削参数仅供加工参考,应根据实际情况进 行调整。

车床加工

切削参数	硬质合金车刀		高速钢
切削多数	粗车	精车	车刀 精车
车削速度 (v _c), m/min	200 – 250	250 – 300	25-30
进给量 (f) mm/rev	0.2 – 0.4	0.05 - 0.2	0.05-0.3
切深 (a _p) mm	2 - 4	0.5 – 2	0.5 – 2
硬质合金刀具 ISO	P20 – P30 涂覆硬质 合金	P10 涂覆硬质 合金或金 属陶瓷	-

钻孔加工

高速钢麻花钻

钻头直径 mm	钻孔速度 (v _c) m/min	进给量(f) mm/r
≤ 5	16 – 18 *	0.05 - 0.15
5 – 10	16 – 18 *	0.15 – 0.20
10 – 15	16 – 18 *	0.20 - 0.25
15 – 20	16 – 18 *	0.25 - 0.35

^{*} 涂层高速钢钻头 V_c = 28 - 30 m/min

硬质合金钻头

1	钻头类型		
加工参数	可转位 钻头	整体硬质 合金	钎焊硬质 合金 ¹⁾
钻孔速度 (v _c), m/min	220 – 240	130 – 160	80 – 110
进给量((f __) mm/tooth	0.03 - 0.12 2)	0.08 – 0.20 3)	0.15 - 0.25 4)

¹⁾ 可替换式或钎焊硬质合金刀具

铣床加工

面铣和直角台阶铣

加州会粉	硬质合	行 合金铣刀	
切削参数 	粗铣	精铣	
铣削速度 (v _c) m/min	180 – 260	260 – 300	
进给量 (f __) mm/tooth	0.2 – 0.4	0.1 – 0.2	
切深 (a _p) mm	2 – 5	≤ 2	
硬质合金刀具 ISO标号	P20 – P40 涂覆硬质合金	P10 - P20 涂覆硬质 合金或金 属陶瓷	

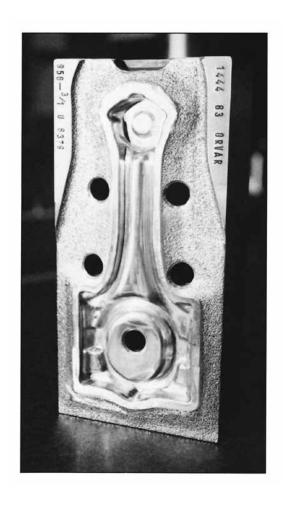
端铣

	端铣刀类型		
切削参数	整体硬质 合金	可转位硬质 合金	高速钢 刀具
铣削速度 (v _c) m/min	160 – 200	170 – 230	35 – 40 ¹⁾
进给量 (f _z) mm/tooth	0.03 - 0.20 2)	0.08 – 0.20 ²⁾	0.05 - 0.35 2)
切深 (a _p) mm	-	P20, P30	-

¹⁾ 涂层高速钢端铣刀 Vc = 55 – 60 m/min ²⁾ 取决于端铣切削半径及铣刀直径

磨削加工

一般砂轮建议如下。更多详情可参见工模具钢的 磨削手册。


磨削方式	退火状态	淬硬状态
平面砂轮平面磨削	A 46 HV	A 46 HV
扇形砂轮平面磨削	A 24 GV	A 36 GV
外圆磨削	A 46 LV	A 60 KV
内圆磨削	A 46 JV	A 60 IV
成型磨削	A 100 KV	A 120 KV

²⁾ 钻孔直径为20 – 40 mm 的进给速度 3) 钻孔直径为 5 – 20 mm 的进给速度 4) 钻孔直径为 10 – 20 mm 的进给速度

焊接

进行适当的预热、对焊补处进行正确的预处理、焊 接时应选择适当的焊条并采用合适的焊接工艺, 工模具钢能得到满意的焊接结果。以下总结了补 焊最重要的参数。

焊接方法	TIG	MMA
预热温度	325 - 375 °C	325 - 375 °C
焊材	QRO 90 TIG Weld DIEVAR TIG Weld	QRO 90 Weld
冷却速度	最初 2~3小时内冷速为20 - 40 °C/h, 然后空冷。	
焊后硬度	50 - 55 HRC	50 - 55 HRC
焊后热处理		
淬硬态	低于原回火温度10-20℃回火	
退火态	在保护气氛中 850 °C 软化退火,以 10 °C/小时炉冷至 650 °C,然后空 冷。	

电火花加工 — EDM

如果在硬化和回火条件下进行火花腐蚀,则应该机 械除去白色的重铸层,例如,通过研磨或石磨。然 后,该工具应该在比之前的回火温度低25°C回火。

硬铬镀层

电镀后,部件应在电镀4小时内在180°C下回火4小 时以避免氢脆的风险。

抛光

由于结构非常均匀,ASSAB 8407 Supreme在硬化 和回火条件下具有良好的抛光性能。

由于经过电渣重熔, ASSAB 8407 Supreme 不仅显 微结构均匀, 而且还具有低水平的非金属夹杂, 确 保了抛光后有良好的光亮表面。

注意: 每种钢种都有最佳的抛光时间, 这主要取决 于硬度和抛光技术。过度抛光会导致表面光亮度 差,"桔皮"或凹陷。

蚀纹刻蚀

ASSAB 8407 Supreme特别适用于蚀纹刻蚀的纹 理。其高均匀性和低硫含量确保了精确和一致的 图案复制。

更多信息

请与您最近的一胜百公司联系,以获得更多有关钢 材选择、热处理及应用等资料。

一**胜百** 卓越的工模具解决方案

一站式供应商

一胜百是领先业界、无可媲美的一站式产品和服务供应商,面向全球市场,提供卓越的工模具解决方案。除了供应工模具钢及特殊钢材之外,我们也致力于提供覆盖所有供应链的综合增值服务,如机加工,热处理和涂层服务确保为客户打造方便可靠的钢材使用体验。我们也致力于为客户提供解决方案,不断推陈出新,提高总体加工成本效益。

正确选择钢材至关重要。一胜百工程师和冶金学家可以随时辅助您,针对不同应用选择最合适的模具钢种,以及最佳的处理方式。一胜百不仅提供优越品质的模具钢材,还提供世界最先进的机加工,热处理和表面处理服务,增强模具钢性能,满足最短交货期的需求。一胜百不只是一个模具钢的供应商,而且是提供一站式整体化解决方案的可靠的合作伙伴。

一胜百和Uddeholm遍布全球,不论您身处何地,确保您可以获得高品质的模具钢和当地支持。同时,我们继续确保作为模具钢的世界领导地位。

如需要更多信息,请浏览

www.assab.com

一胜百 微信账户二维码

